Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
if ex = y+ √1+y2, then the value of y is
Q. if
e
x
=
y
+
1
+
y
2
,
then the value of y is
3231
178
VITEEE
VITEEE 2006
Report Error
A
2
1
(
e
x
+
e
−
x
)
12%
B
2
1
(
e
x
−
e
−
x
)
47%
C
e
x
−
e
2
−
x
24%
D
e
x
+
e
2
−
x
18%
Solution:
Given
e
x
y
+
1
+
y
2
⇒
e
x
−
y
=
1
+
y
2
Squaring both side, we have
e
2
x
+
y
2
−
2
e
x
y
=
1
+
y
2
⇒
2
e
x
y
=
e
2
x
−
1
⇒
y
=
2
e
x
e
2
x
−
1
⇒
y
=
2
1
[
e
x
−
e
−
x
]