If e is eccentricity f hyperbola a2x2−b2y2=1, then e=1+a2b2.
Since, e is eccentricity of hyperbola a2x2−b2y2=1 ∴e=1+a2b2 ⇒e2=1+a2b2=a2a2+b2
and e is eccentricity of hyperbola b2x2−a2y2=1 ∴e′=1+b2a2 ⇒(e′)2=1+b2a2=b2a2+b2 ∴e21+(e)21=a2+b2a2+a2+b2b2 =a2+b2a2+b2=1