Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (dy/dx)=tan2(x+y), then sin2(x+y)=
Q. If
d
x
d
y
=
t
a
n
2
(
x
+
y
)
, then
s
in
2
(
x
+
y
)
=
2711
181
Differential Equations
Report Error
A
x
−
y
+
c
33%
B
2
(
x
−
y
)
+
c
67%
C
x
+
y
+
c
0%
D
2
(
x
+
y
)
+
c
0%
Solution:
Substitute
x
+
y
=
z
⇒
d
x
d
y
=
d
x
d
z
−
1
So, the given equation becomes
d
x
d
z
=
se
c
2
z
⇒
d
x
=
co
s
2
z
d
z
=
2
1
+
cos
2
z
d
z
⇒
x
=
2
1
(
z
+
2
s
in
2
z
)
+
c
1
⇒
2
x
=
x
+
y
+
2
s
in
2
(
x
+
y
)
+
c
2
⇒
2
(
x
−
y
)
=
s
in
2
(
x
+
y
)
−
c
⇒
s
in
2
(
x
+
y
)
=
2
(
x
−
y
)
+
c