Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If domain of f(x)=√((x-1)(7-x)(x-5)4/x(x-5)2) is D, then number of positive integers in D is
Q. If domain of
f
(
x
)
=
x
(
x
−
5
)
2
(
x
−
1
)
(
7
−
x
)
(
x
−
5
)
4
is
D
, then number of positive integers in
D
is
445
132
Relations and Functions - Part 2
Report Error
A
5
67%
B
6
13%
C
7
8%
D
8
11%
Solution:
x
(
x
−
5
)
2
(
x
−
1
)
(
7
−
x
)
(
x
−
5
)
4
≥
0
x
(
x
−
1
)
(
7
−
x
)
≥
0
,
x
=
5
⇒
x
∈
(
−
∞
,
0
)
∪
[
1
,
7
]
−
{
5
}
=
D
⇒
Number of positive integers in
D
=
6