Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If displaystyle∑r=1n r4=I(n) then displaystyle∑r=1n(2 r-1)4 is equal to
Q. If
r
=
1
∑
n
r
4
=
I
(
n
)
then
r
=
1
∑
n
(
2
r
−
1
)
4
is equal to
1477
221
Sequences and Series
Report Error
A
I
(
2
n
)
−
I
(
n
)
B
I
(
2
n
)
−
16
I
(
n
)
C
I
(
2
n
)
−
8
I
(
n
)
D
I
(
2
n
)
−
4
I
(
n
)
Solution:
I
(
2
n
)
=
1
4
+
2
4
+
3
4
+
…
+
(
2
n
−
1
)
4
+
(
2
n
)
4
=
(
1
4
+
3
4
+
5
4
+
…
+
(
2
n
−
1
)
4
)
+
2
4
(
1
4
+
2
4
+
3
4
+
4
4
+
…
n
4
)
=
r
=
1
∑
n
(
2
r
−
1
)
4
+
16
⋅
I
(
n
)
⇒
r
=
1
∑
n
(
2
r
−
1
)
4
=
I
(
2
n
)
−
16
I
(
n
)