Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ( displaystyle∑r=18 sin ((2 r-1) (π/36))/ displaystyle prodk=06 cos (2k ⋅ (π)36))=2n tan 140° (where n ∈ N ) then 'n' is
Q. If
k
=
0
∏
6
cos
(
2
k
⋅
36
π
)
r
=
1
∑
8
sin
(
(
2
r
−
1
)
36
π
)
=
2
n
tan
14
0
∘
(where
n
∈
N
) then '
n
' is
157
169
Trigonometric Functions
Report Error
Answer:
6
Solution:
k
=
0
∏
6
cos
(
2
k
⋅
36
π
)
r
=
1
∑
8
sin
(
(
2
r
−
1
)
36
π
)
=
(
s
i
n
36
π
s
i
n
36
8
π
⋅
s
i
n
36
8
π
)
(
s
i
n
2
7
36
π
2
7
s
i
n
36
π
)
⇒
s
i
n
(
64
0
∘
)
2
7
s
i
n
4
0
∘
s
i
n
4
0
∘
=
−
c
o
s
1
0
∘
2
7
s
i
n
4
0
∘
=
−
2
6
[
(
c
o
s
5
∘
−
s
i
n
5
∘
)
(
c
o
s
5
∘
+
s
i
n
5
∘
)
1
−
c
o
s
8
0
∘
]
=
−
2
6
(
c
o
s
5
∘
+
s
i
n
5
∘
c
o
s
5
∘
−
s
i
n
5
∘
)
=
2
6
(
c
o
s
5
∘
+
s
i
n
5
∘
c
o
s
5
∘
−
s
i
n
5
∘
)
=
−
2
6
tan
4
0
∘
=
2
6
tan
14
0
∘