We have an=tan−1(9n2+3n−13)=tan−1(1+(3n+2)(3n−1)3)=tan−1(1+(3n+2)(3n−1)(3n+2)−(3n−1)) =tan−1(3n+2)−tan−1(3n−1) ∴ Sum of first 10 terms =r=1∑10ar=r=1∑10(tan−1(3r+2)−tan−1(3r−1)) =(tan−15−tan−12)+(tan−18−tan−15)+……..+(tan−132−tan−129) =tan−132−tan−12=tan−1(1+32⋅232−2)=tan−16530=tan−1(136)=cot−1(613)=cot−1(nm) ∴m=13 and n=6 Hence (m−n)=13−6=7