Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If displaystyle∑nR = 0 (-1)r (nCr/r+3Cr) = (3/a+3) , then a - n is equal to
Q. If
R
=
0
∑
n
(
−
1
)
r
r
+
3
C
r
n
C
r
=
a
+
3
3
, then a - n is equal to
3837
215
BITSAT
BITSAT 2017
Report Error
A
0
50%
B
1
11%
C
2
39%
D
None of these
0%
Solution:
r
+
3
C
r
n
C
r
=
3
!
(
r
+
3
)
(
r
+
2
)
1
.
(
r
+
1
)
n
C
r
=
3
!
(
r
+
3
)
(
r
+
2
)
1
.
(
n
+
1
)
n
+
1
C
r
+
1
=
3
!
(
r
+
3
)
(
n
+
1
)
1
r
+
2
n
+
1
C
r
+
1
=
3
!
(
r
+
3
)
(
n
+
1
)
1
n
+
2
n
+
2
C
r
+
2
=
(
n
+
1
)
(
n
+
2
)
3
!
.
r
+
3
n
+
2
C
r
+
2
=
(
n
+
1
)
(
n
+
2
)
(
n
+
3
)
3
!
n
+
3
C
r
+
3
∴
r
=
0
∑
n
(
−
1
)
r
r
+
3
C
r
n
C
r
=
(
n
+
1
)
(
n
+
2
)
(
n
+
3
)
6
r
=
0
∑
n
(
−
1
)
r
n
+
3
C
r
+
3
=
(
n
+
1
)
(
n
+
2
)
(
n
+
3
)
6
[
n
+
3
C
3
−
n
+
3
C
4
+
...
+
(
−
1
)
n
n
+
3
C
n
+
3
]
=
(
n
+
1
)
(
n
+
2
)
(
n
+
3
)
6
[
n
+
3
C
0
−
n
+
3
C
1
+
n
+
3
C
2
]
[
∵
n
+
3
C
0
−
n
+
3
C
1
+
......
+
(
−
1
)
n
+
3
×
n
+
3
C
n
+
3
=
0
]
=
(
n
+
1
)
(
n
+
2
)
(
n
+
3
)
6
(
1
−
n
−
3
+
2
(
n
+
3
)
(
n
+
2
)
)
=
(
n
+
1
)
(
n
+
2
)
(
n
+
3
)
3
(
n
2
+
3
n
+
2
)
=
n
+
3
3
n
+
3
3
=
a
+
3
3
⇒
n
=
a
⇒
a
−
n
=
0