Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If displaystyle∑n=1∞ tan -1((2n/22 n+1+3 ⋅ 2n+2))= cot -1(λ) then λ is equal to
Q. If
n
=
1
∑
∞
tan
−
1
(
2
2
n
+
1
+
3
⋅
2
n
+
2
2
n
)
=
cot
−
1
(
λ
)
then
λ
is equal to
260
110
Inverse Trigonometric Functions
Report Error
A
2
B
3
C
5
D
6
Solution:
n
=
1
∑
∞
tan
−
1
(
2
2
n
+
1
+
3
⋅
2
n
+
2
2
n
)
=
n
=
1
∑
∞
tan
−
1
(
1
+
2
⋅
2
2
n
+
3
⋅
2
n
+
1
2
n
)
=
n
=
1
∑
∞
tan
−
1
(
1
+
(
2
n
+
1
+
1
)
(
2
n
+
1
)
(
2
n
+
1
+
1
)
−
(
2
n
+
1
)
)
=
n
=
1
∑
∞
(
tan
−
1
(
2
n
+
1
+
1
)
−
tan
−
1
(
2
n
+
1
)
)
=
2
π
−
tan
−
1
3
=
cot
−
1
(
3
)
≡
cot
−
1
(
λ
)
∴
λ
=
3.