Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If displaystyle∑ i =0∞ displaystyle∑ j =0∞ (1/ a i ⋅ a j )=(λ a 2/( a -1)2( a +1)) where i ≠ j and a >1 then possible values of λ may be
Q. If
i
=
0
∑
∞
j
=
0
∑
∞
a
i
⋅
a
j
1
=
(
a
−
1
)
2
(
a
+
1
)
λ
a
2
where
i
=
j
and
a
>
1
then possible values of
λ
may be
67
106
Binomial Theorem
Report Error
A
1
B
2
C
3
D
4
Solution:
When no restriction on i and j
S
=
i
=
0
∑
∞
j
=
0
∑
∞
a
i
⋅
a
j
1
=
(
1
+
a
1
+
a
2
1
+
…
∞
)
2
=
(
a
−
1
)
2
a
2
i
=
j
⇒
S
=
(
a
−
1
)
2
(
a
+
1
)
λ
a
2
⇒
λ
>
2