Given that, 4=x→∞lim(x4+ax3+3x2+bx+2−x4+2x3−cx2+3x−d) =x→∞limx4+ax3+3x2+bx+2+x4+2x3−cx2+3x−d(a−2)x3+(3+c)x2+(b−3)x+2+d
Since, the limit is finite, the degree of the numerator must be at the most 2 ⇒a−2=0, i.e., a=2
Hence, 4=x→∞lim1+xa+x23+x3b+x42+1+x2−x2c−x33−x4d(3+c)+xb−3+x22+d ⇒4=23+c ⇒c=5
Hence, a=2, c=5 and b, d are any real numbers.