Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If displaystyle limx →∞ (1+ (a/x) + (b/x2))2x = e2 , then the values of a and b, are
Q. If
x
→
∞
lim
(
1
+
x
a
+
x
2
b
)
2
x
=
e
2
, then the values of a and b, are
3159
201
AIEEE
AIEEE 2004
Limits and Derivatives
Report Error
A
a
=
1
and
b
=
2
27%
B
a
=
1
,
b
∈
R
40%
C
a
∈
R
,
b
=
2
14%
D
a
∈
R
,
b
∈
R
19%
Solution:
We know that
x
→
∞
lim
(
1
+
x
)
x
1
=
e
∴
x
→
∞
lim
(
1
+
x
a
+
x
2
b
)
2
x
=
e
2
⇒
x
→
∞
lim
⎣
⎡
(
1
+
x
a
+
x
2
b
)
(
x
a
+
x
2
b
1
)
⎦
⎤
2
x
(
x
a
+
x
2
b
)
=
e
2
⇒
e
x
→
∞
lim
2
[
a
+
x
b
]
=
e
2
⇒
e
2
a
=
e
2
⇒
a
=
1
,
b
∈
R