Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If displaystyle lim x arrow 0 (ax-( e 4 x-1)/ax( e 4 x -1)) exists and is equal to b , then the value of a -2 b is .
Q. If
x
→
0
lim
a
x
(
e
4
x
−
1
)
a
x
−
(
e
4
x
−
1
)
exists and is equal to
b
,
then the value of
a
−
2
b
is _______.
2253
194
JEE Main
JEE Main 2021
Limits and Derivatives
Report Error
Answer:
5
Solution:
x
→
0
lim
a
x
(
e
4
x
−
1
)
a
x
−
(
e
4
x
−
1
)
(
0
0
)
=
x
→
0
lim
a
x
⋅
4
x
a
x
−
(
e
4
x
−
1
)
Use
x
→
0
lim
4
x
e
4
x
−
1
=
1
Apply L'Hospital Rule
=
x
→
0
lim
8
a
x
a
−
4
e
4
x
(
0
a
−
4
form
)
limit exists only when
a
−
4
=
0
⇒
a
=
4
=
x
→
0
lim
32
x
4
−
4
e
4
x
−
x
→
0
lim
8
x
1
−
e
4
x
(
0
0
)
=
x
→
0
lim
8
−
e
4
x
⋅
4
=
−
2
1
⇒
b
=
−
2
1
a
−
2
b
=
4
−
2
(
−
2
1
)
=
5