Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If displaystyle lim x arrow 0 (2 a sin x- sin 2 x/ tan 3 x) exists and is equal to 1 , then the value of a is
Q. If
x
→
0
lim
tan
3
x
2
a
sin
x
−
sin
2
x
exists and is equal to
1
, then the value of
a
is
1695
207
WBJEE
WBJEE 2014
Limits and Derivatives
Report Error
A
2
15%
B
1
66%
C
0
11%
D
−
1
8%
Solution:
x
→
0
lim
tan
3
x
2
a
sin
x
−
sin
2
x
=
x
→
0
lim
(
x
+
3
x
3
+
15
2
x
5
+
…
)
3
2
a
(
x
−
3
!
x
3
+
5
!
x
5
−
…
)
−
(
2
x
−
3
!
(
2
x
)
3
+
5
!
(
2
x
)
5
−
…
)
=
x
→
0
lim
x
3
(
1
+
3
x
2
+
15
2
x
4
+
…
)
3
(
2
a
−
2
)
x
+
(
−
3
!
2
a
+
3
!
2
3
)
x
3
+
(
5
!
2
a
−
5
!
2
5
)
x
5
+
…
Since, it is given that given limit, is exist, then
2
a
−
2
=
0
⇒
α
=
1