Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If displaystyle lim x arrow 0 (1-√ cos 2 x ⋅ √[3] cos 3 x ⋅ √[4] cos 4 x ldots ⋅ √[n] cos n x/x2) has the value equal to 10 , then the value of n equals.
Q. If
x
→
0
lim
x
2
1
−
cos
2
x
⋅
3
cos
3
x
⋅
4
cos
4
x
…
⋅
n
cos
n
x
has the value equal to
10
, then the value of
n
equals.
1543
228
Limits and Derivatives
Report Error
Answer:
6
Solution:
L
=
x
→
0
lim
=
−
x
→
0
lim
2
x
D
r
=
2
∏
n
(
cos
r
x
)
1/
r
(using L’Hospital’s rule)
let
y
=
r
=
2
∏
n
(
cos
r
x
)
1/
r
⇒
ln
y
=
r
=
2
∑
n
(
r
1
ln
cos
r
x
)
⇒
y
1
d
x
d
y
=
−
r
=
2
∑
n
tan
(
r
x
)
⇒
−
Dy
=
y
r
=
2
∑
n
tan
(
r
x
)
D
r
=
2
∏
n
(
cos
r
x
)
1/
r
=
−
y
r
=
2
∑
n
tan
(
r
x
)
L
=
x
→
0
lim
2
x
y
⋅
r
=
2
∑
n
tan
(
r
x
)
=
2
1
[
2
+
3
+
4
+
…
.
+
n
]
=
2
1
[
2
n
(
n
+
1
)
−
1
]
=
4
n
2
+
n
−
2
⇒
4
n
2
+
n
−
2
=
10
⇒
n
2
+
n
−
42
=
0
⇒
(
n
+
7
)
(
n
−
6
)
=
0
⇒
n
=
6