Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If displaystyle lim x arrow 0 ((1+a3)+8 e1 / x/1+(1-b3) e1 / x)=2, then
Q. If
x
→
0
lim
1
+
(
1
−
b
3
)
e
1/
x
(
1
+
a
3
)
+
8
e
1/
x
=
2
, then
2141
214
Limits and Derivatives
Report Error
A
a
=
1
,
b
=
(
−
3
)
1/3
B
a
=
1
,
b
=
3
1/3
C
a
=
−
1
,
b
=
−
(
3
)
1/3
D
None of these
Solution:
We have
2
=
x
→
0
lim
1
+
(
1
−
b
3
)
e
1/
x
(
1
+
a
3
)
+
8
e
1/
x
(
∞
∞
form
)
⇒
2
=
x
→
0
lim
0
+
(
1
−
b
3
)
e
1/
x
(
−
1/
x
2
)
0
+
8
e
1/
x
(
−
1/
x
2
)
(Using L’Hospital’s Rule)
⇒
1
−
b
3
=
4
⇒
b
3
=
−
3
⇒
b
=
(
−
3
)
1/3
∴
From Eq. (1),
2
=
x
→
0
lim
1
+
4
e
1/
x
(
1
+
a
3
)
+
8
e
1/
x
⇒
1
+
a
3
=
2
i.e.,
a
=
1
Hence
a
=
1
and
b
=
(
−
3
)
1/3
.