Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If displaystyle lim n arrow ∞ ((n+1)k-1/nk+1)[(n k+1)+(n k+2)+ ldots+ (n k+n)]=33 . displaystyle lim n arrow ∞ (1/nk+1) ⋅[1k+2k+3k+ ldots+nk], then the integral value of k is equal to
Q. If
n
→
∞
lim
n
k
+
1
(
n
+
1
)
k
−
1
[(
nk
+
1
)
+
(
nk
+
2
)
+
…
+
(
nk
+
n
)]
=
33.
n
→
∞
lim
n
k
+
1
1
⋅
[
1
k
+
2
k
+
3
k
+
…
+
n
k
]
,
then the
integral value of
k
is equal to _______
262
136
JEE Main
JEE Main 2022
Limits and Derivatives
Report Error
Answer:
5
Solution:
LHS
n
→
∞
lim
n
k
+
1
(
n
+
1
)
k
−
1
[
nk
⋅
n
+
1
+
2
+
…
+
n
]
=
n
→
∞
lim
n
k
+
1
(
n
+
1
)
k
−
1
⋅
[
n
2
k
+
2
n
(
n
+
1
)
]
=
n
→
∞
lim
n
k
+
1
(
n
+
1
)
k
−
1
⋅
n
2
(
k
+
2
(
1
+
n
1
)
)
⇒
n
→
∞
lim
(
1
+
n
1
)
(
k
+
2
(
1
+
n
1
)
)
⇒
(
k
+
2
1
)
RHS
⇒
n
→
∞
lim
n
k
+
1
1
(
1
k
+
2
k
+
…
+
n
k
)
=
k
+
1
1
LHS
=
RHS
⇒
k
+
2
1
=
33
⋅
k
+
1
1
⇒
(
2
k
+
1
)
(
k
+
1
)
=
66
⇒
(
k
−
5
)
(
2
k
+
13
)
=
0
⇒
k
=
5
or
−
2
13