Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If [ ] denotes the greatest integer less than or equal to the real number under consideration and -1 le x < 0; 0 le y < 1; 1 le z < 2 , then the value of the determinant |[x]+1&[y]&[z] [x]&[y]+1&[z] [x]&[y]&[z]+1| is
Q. If [ ] denotes the greatest integer less than or equal to the real number under consideration and
−
1
≤
x
<
0
;
0
≤
y
<
1
;
1
≤
z
<
2
, then the value of the determinant
∣
∣
[
x
]
+
1
[
x
]
[
x
]
[
y
]
[
y
]
+
1
[
y
]
[
z
]
[
z
]
[
z
]
+
1
∣
∣
is
2647
183
BITSAT
BITSAT 2016
Report Error
A
[z]
33%
B
[y]
33%
C
[x]
33%
D
None of these
0%
Solution:
Since,
−
1
≤
x
<
0
∴
[
x
]
=
−
1
0
≤
y
<
1
∴
[
y
]
=
0
1
≤
z
<
2
∴
[
z
]
=
1
∴
Given determinant =
∣
∣
0
−
1
−
1
0
1
0
1
1
2
∣
∣
=
1
=
[
z
]