Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If [ ] denotes the greatest integer less than or equal to the real number under consideration and $-1 \le x < 0; 0 \le y < 1; 1 \le z < 2 $ , then the value of the determinant
$\begin{vmatrix}\left[x\right]+1&\left[y\right]&\left[z\right]\\ \left[x\right]&\left[y\right]+1&\left[z\right]\\ \left[x\right]&\left[y\right]&\left[z\right]+1\end{vmatrix}$ is

BITSATBITSAT 2016

Solution:

Since, $-1 \leq x<0$
$\therefore [x]=-1$
$0 \leq y<1 \therefore [y]=0$
$1 \leq z<2 \therefore [z]=1$
$\therefore $ Given determinant = $\begin{vmatrix}0&0&1\\ -1&1&1\\ -1&0&2\end{vmatrix}$
$ = 1 = [z] $