Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If [⋅] denotes the greatest integer function, then displaystyle lim x arrow 0 ( tan ([-2 π2] x2)-x2 tan [-2 π2]/ sin 2 x) is equal to
Q. If
[
⋅
]
denotes the greatest integer function, then
x
→
0
lim
sin
2
x
tan
(
[
−
2
π
2
]
x
2
)
−
x
2
tan
[
−
2
π
2
]
is equal to
2056
212
Limits and Derivatives
Report Error
A
−
20
+
tan
20
B
20
+
tan
20
C
20
D
None of these
Solution:
We have,
[
−
2
π
2
]
=
−
20
⇒
x
→
0
lim
sin
2
x
tan
(
[
−
2
π
2
]
x
2
)
−
x
2
tan
[
−
2
π
2
]
=
x
→
0
lim
sin
2
x
tan
(
−
20
x
2
)
−
x
2
tan
(
−
20
)
=
x
→
0
lim
−
20
x
2
tan
20
x
2
×
20
×
sin
2
x
x
2
+
(
sin
x
x
)
2
tan
20
=
−
20
+
tan
20