Q. If $[\cdot]$ denotes the greatest integer function, then $\displaystyle\lim _{x \rightarrow 0} \frac{\tan \left(\left[-2 \pi^{2}\right] x^{2}\right)-x^{2} \tan \left[-2 \pi^{2}\right]}{\sin ^{2} x}$ is equal to
Limits and Derivatives
Solution: