Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If Δr = |2r-1&mCr&1 m2 - 1 &2m&m+1 sin2(m2)& sin2 (m)& sin2 (m + 1)| , then the value of displaystyle∑mr=0 Δ r , is
Q. If
Δ
r
=
∣
∣
2
r
−
1
m
2
−
1
sin
2
(
m
2
)
m
C
r
2
m
sin
2
(
m
)
1
m
+
1
sin
2
(
m
+
1
)
∣
∣
, then the value of
r
=
0
∑
m
Δ
r
, is
2179
225
VITEEE
VITEEE 2014
Report Error
A
1
0%
B
0
50%
C
2
0%
D
None of these
50%
Solution:
Δ
r
=
∣
∣
2
r
−
1
m
2
−
1
sin
2
(
m
2
)
m
C
r
2
m
sin
2
(
m
)
1
m
+
1
sin
2
(
m
+
1
)
∣
∣
∴
r
=
0
∑
m
Δ
r
=
∣
∣
r
=
0
∑
m
(
2
r
−
1
)
m
2
−
1
sin
2
(
m
2
)
r
=
0
∑
m
m
C
r
2
m
sin
2
(
m
)
r
=
0
∑
m
1
m
+
1
sin
2
(
m
+
1
)
∣
∣
=
∣
∣
m
2
−
1
m
2
−
1
sin
2
(
m
2
)
2
m
2
m
sin
2
(
m
)
m
+
1
m
+
1
sin
2
(
m
+
1
)
∣
∣
=
0
(
∵
two rows are identical)