Q.
If Δ1​=∣∣​x−sinθcosθ​sinθ−x1​cosθ1x​∣∣​ and Δ2​=∣∣​x−sin2θcos2θ​sin2θ−x1​cos2θ1x​∣∣​,xî€ =0; then for all θ∈(0,2π​):
Δ1​=f(θ)=∣∣​x−sinθcosθ​sinθ−x1​cosθ1x​∣∣​=−x3
and Δ2​=f(2θ)=∣∣​x−sin2θcos2θ​sin2θ−x1​cos2θ1x​∣∣​=−x3
So Δ1​+Δ2​=−2x3