Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\Delta_{1} = \begin{vmatrix}x&\sin\theta&\cos\theta\\ -\sin\theta&-x&1\\ \cos\theta&1&x\end{vmatrix} $ and $ \Delta_{2} = \begin{vmatrix}x&\sin2\theta&\cos2 \theta\\ -\sin2\theta&-x&1\\ \cos2\theta& 1&x\end{vmatrix} , x \ne0 ; $ then for all $ \theta \in \left(0, \frac{\pi}{2}\right) :$

JEE MainJEE Main 2019Determinants

Solution:

$\Delta_{1} =f\left(\theta\right) = \begin{vmatrix}x&\sin\theta&\cos\theta\\ -\sin\theta&-x&1\\ \cos\theta&1&x\end{vmatrix} =-x^{3} $
and $ \Delta_{2} =f\left(2\theta\right) = \begin{vmatrix}x &\sin2\theta&\cos2\theta\\ -\sin2\theta&-x&1\\ \cos2\theta&1&x\end{vmatrix} = -x^{3}$
So $ \Delta_{1} + \Delta_{2} = - 2x^{3}$