dxdy=y+0∫1ydx(i) ⇒dxdy=y+k1( let k1=0∫1ydx) ⇒∫y+k1dy=∫dx ⇒loge(y+k1)=x+c ⇒y+k1=k2ex(ii)
Curve passes through (0,1)⇒1+k1=k2(iii)
Putting the value of y (from equation(ii) into equation (i)) dxdy=(k2ex−k1)+0∫1(k2ex−k1)dx ⇒dxdy=(k2ex−k1)+[k2ex−k1x]01 ⇒dxdy=k2ex−k1+k2e−k1−k2 ⇒dy=(k2ex+k2e−2k1−k2)dx ⇒1∫ydy=0∫x(k2ex+k2e−2k1−k2)dx ⇒y−1=k2ex+(k2e−2k1−k2)x−k2(iv)
Since equations (ii) and (iv) are similar ∴k2e−2k1−k2=0 and 1+k1=k2
Solving equations, we get k2=3−e2,k1=3−ee−1
From equation (ii), y+k1=k2ex ⇒y=3−e2ex−3−ee−1 ∴y=3−e1(2ex−e+1)