The given differential equation is dxdy=x2+y2xy.....(i) =1+(xy)2y/x=g(xy)[∵dxdy=g(xy)] ∴ Eq. (i) is the homogeneous differential equation
So, put y=vx ⇒dxdy=v+xdxdv ∴v+xdxdv=x2(1+v2)x2v ⇒∫v31+v2dv=−∫xdx ⇒−2v21+logv=−logx+logC ⇒−21⋅y2x2+log∣y∣=logC ∵y(1)=1⇒−21=logC ∴−21⋅y2x2+log∣y∣=−21 ⇒loge∣y∣+21=2y2x2
Again, when x=x0,y=e 1+21=2e2x02 x0=3e