Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (d y/d x)=(ey-x)-1 where y(0)=0, then y is expressed explicitly as
Q. If
d
x
d
y
=
(
e
y
−
x
)
−
1
where
y
(
0
)
=
0
, then
y
is expressed explicitly as
487
108
Differential Equations
Report Error
A
2
1
ln
(
1
+
x
2
)
B
ln
(
1
+
x
2
)
C
ln
(
x
+
1
+
x
2
)
D
ln
(
x
+
1
−
x
2
)
Solution:
We have
d
x
d
y
=
(
e
y
−
x
)
−
1
⇒
d
y
d
x
=
e
y
−
x
⇒
d
y
d
x
+
x
=
e
y
;
So I.F.
=
e
∫
d
y
=
e
y
∴
General solution is given by
x
e
y
=
2
1
e
2
y
+
C
⇒
x
=
2
e
y
+
C
e
−
y
As
y
(
0
)
=
0
, so
C
=
2
−
1
∴
x
=
2
e
y
−
2
1
e
−
y
⇒
e
y
−
e
−
y
=
2
x
⇒
e
2
y
−
2
x
e
y
−
1
=
0
⇒
2
e
y
=
2
x
±
4
x
2
+
4
But
e
y
=
x
−
x
2
+
1
(Rejected)
Hence
y
=
ln
(
x
+
x
2
+
1
)