Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (d y/d x)=(2x y+2y ⋅ 2x/2x+2x+y log e 2), y(0)=0, then for y=1, the value of x lies in the interval:
Q. If
d
x
d
y
=
2
x
+
2
x
+
y
l
o
g
e
2
2
x
y
+
2
y
⋅
2
x
,
y
(
0
)
=
0
, then for
y
=
1
, the value of
x
lies in the interval:
2437
168
JEE Main
JEE Main 2021
Differential Equations
Report Error
A
(
1
,
2
)
29%
B
(
2
1
,
1
]
27%
C
(
2
,
3
)
20%
D
(
0
,
2
1
]
24%
Solution:
d
x
d
y
=
2
x
(
1
+
2
y
ℓ
n
2
)
2
x
(
y
+
2
y
)
⇒
∫
(
y
+
2
y
)
(
1
+
2
y
)
ℓ
n
2
d
y
=
∫
d
x
⇒
ℓ
n
∣
y
+
2
y
∣
=
x
+
c
x
=
0
;
y
=
0
⇒
c
=
0
⇒
x
=
ℓ
n
∣
y
+
2
y
∣
⇒
at
y
=
1
,
x
=
ln
3
∵
3
∈
(
e
,
e
2
)
⇒
x
∈
(
1
,
2
)