Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If Dk=| 1 n n 2k n2+n+1 n2+n 2k-1 n2 n2+n+1 | and displaystyle ∑ k = 1nDk=56 , then n equals to
Q. If
D
k
=
∣
∣
1
2
k
2
k
−
1
n
n
2
+
n
+
1
n
2
n
n
2
+
n
n
2
+
n
+
1
∣
∣
and
k
=
1
∑
n
D
k
=
56
, then
n
equals to
3158
147
NTA Abhyas
NTA Abhyas 2022
Report Error
A
4
B
8
C
6
D
None of these
Solution:
It is given that
Σ
k
=
1
n
D
k
=
56
where,
D
k
=
∣
∣
1
2
k
2
k
−
1
n
n
2
+
n
+
1
n
2
n
n
2
+
n
n
2
+
n
+
1
∣
∣
⇒
∣
∣
Σ
k
=
1
n
1
Σ
k
=
1
n
2
k
Σ
k
=
1
n
(
2
k
−
1
)
n
n
2
+
n
+
1
n
2
n
n
2
+
n
n
2
+
n
+
1
∣
∣
=
56
⇒
∣
∣
n
n
(
n
+
1
)
n
2
n
n
2
+
n
+
1
n
2
n
n
2
+
n
n
2
+
n
+
1
∣
∣
=
56
C
2
→
C
2
−
C
1
C
3
→
C
3
−
C
1
∣
∣
n
n
2
+
n
n
2
0
1
0
0
0
n
+
1
∣
∣
=
56
⇒
n
(
n
+
1
)
=
56
⇒
n
=
7