Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (d/dx)G(x) = (etan x/x),x∈(0, π/2), then ∫ limits1/21/4 (2/x). etan(π x2)dx is equal to
Q. If
d
x
d
G
(
x
)
=
x
e
t
an
x
,
x
∈
(
0
,
π
/2
)
,
then
1/4
∫
1/2
x
2
.
e
t
an
(
π
x
2
)
d
x
is equal to
4641
237
AIEEE
AIEEE 2012
Integrals
Report Error
A
G
(
π
/4
)
−
G
(
π
/16
)
73%
B
2
[
G
(
π
/4
)
−
G
(
π
/16
)
]
10%
C
π
[
G
(
1/2
)
−
G
(
1/4
)
]
13%
D
G
(
1/
2
)
−
G
(
1/2
)
3%
Solution:
Let
d
x
d
G
(
x
)
=
x
e
t
an
x
,
x
∈
(
0
,
2
π
)
Now,
I
=
1/4
∫
1/2
x
2
e
t
an
(
π
x
2
)
.
d
x
<
b
r
/
>
1/4
∫
1/2
π
x
2
2
π
e
t
an
(
π
x
2
)
.
d
x
Let
π
x
2
=
t
⇒
2
π
x
d
x
=
d
t
When
x
=
2
1
,
t
=
4
π
and
x
=
4
1
,
t
=
16
π
I
=
π
/16
∫
π
/4
t
e
t
an
t
d
t
=
g
(
t
)
∣
4
π
16
π
=
G
(
4
π
)
−
G
(
16
π
)