Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\frac{d}{dx}G\left(x\right) = \frac{e^{tan\,x}}{x},x\in\left(0, \pi/2\right),$ then $\int\limits^{1/2}_{1/4} \frac{2}{x}. e^{tan\left(\pi\,x^2\right)}dx $ is equal to

AIEEEAIEEE 2012Integrals

Solution:

Let $\frac{d}{dx}G\left(x\right) = \frac{e^{tan\,x}}{x}, x\in\left(0, \frac{\pi}{2}\right)$
Now, $I = \int\limits^{1/2}_{1/4} \frac{2}{x} e^{tan\left(\pi\,x^2\right)}.dx
\int\limits^{1/2}_{1/4} \frac{2\pi}{\pi x^{2}} e^{tan\left(\pi \,x^2\right)}.dx$
Let $\pi x^{2} = t \Rightarrow 2\pi x \,dx = dt$
When $x = \frac{1}{2}, t = \frac{\pi}{4}$ and $x = \frac{1}{4}, t = \frac{\pi }{16}$
$I = \int\limits^{\pi/4}_{\pi/16} \frac{e^{tan\,t}}{t}dt = g\left(t\right) |\begin{matrix}\frac{\pi}{4}\\ \frac{\pi}{16}\end{matrix}$
$= G \left(\frac{\pi }{4}\right)-G \left(\frac{\pi }{16}\right)$