Q.
If dxd(f(x))=g(x) and dxd(g(x))=f(x2) then dx2d2(f(x3)) can be expressed in the form kxaf(xb)+pxg(xc) where a,b,c,k,p∈N, then the value of (k+p+a+b+c) equals
464
116
Continuity and Differentiability
Report Error
Solution:
Given f′(x)=g(x) g′(x)=f(x2)=f′′(x) let y=f(x3) dxdy=f′(x3)⋅3x2 dx2d2y=3[3x2x2⋅f′′(x3)+2x⋅f′(x3)]=9x4f′′(x3)+6xf′(x3)=9x4⋅f(x6)+6xg(x3) kxaf(xb)+pxg(xc) ∴(k+p+a+b+c)=9+4+6+6+3=28