Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If d1, d2, d3 are the diameters of three ex-circles of a triangle ABC, then d1 d2+d2 d3+d3 d1=
Q. If
d
1
,
d
2
,
d
3
are the diameters of three ex-circles of a
△
A
BC
, then
d
1
d
2
+
d
2
d
3
+
d
3
d
1
=
2094
199
TS EAMCET 2020
Report Error
A
(
a
+
b
+
c
)
2
B
ab
+
b
c
+
c
a
C
4
Δ
2
D
2
s
2
Solution:
We have,
d
1
=
2
r
1
,
d
2
=
2
r
2
,
d
3
=
2
r
3
Now,
d
1
d
2
+
d
2
d
3
+
d
3
d
1
=
(
2
r
1
)
(
2
r
2
)
+
(
2
r
2
)
(
2
r
3
)
+
(
2
r
3
)
(
2
r
1
)
=
4
[
r
1
r
2
+
r
2
r
3
+
r
3
r
1
]
=
4
[
s
−
a
Δ
×
s
−
b
Δ
+
s
−
b
Δ
×
s
−
c
Δ
+
s
−
c
Δ
×
s
−
a
Δ
]
=
4
[
(
s
−
a
)
(
s
−
b
)
Δ
2
+
(
s
−
b
)
(
s
−
c
)
Δ
2
+
(
s
−
c
)
(
s
−
a
)
Δ
2
]
=
4
Δ
2
[
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
s
−
c
+
s
−
a
+
s
−
b
]
=
4
Δ
2
[
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
3
s
−
(
a
+
b
+
c
)
]
=
4
Δ
2
[
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
3/2
(
a
+
b
+
c
)
−
(
a
+
b
+
c
)
]
=
2
4
Δ
2
[
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
a
+
b
+
c
]
=
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
2
s
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
(
a
+
b
+
c
)
=
(
a
+
b
+
c
)
⋅
(
a
+
b
+
c
)
=
(
a
+
b
+
c
)
2