Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If curves (x2/a2)+(y2/4)=1 and y3=16x intersect orthogonally, then a2 equals:
Q. If curves
a
2
x
2
+
4
y
2
=
1
and
y
3
=
16
x
intersect orthogonally, then
a
2
equals:
484
147
NTA Abhyas
NTA Abhyas 2022
Report Error
A
4
3
B
3
4
C
1
D
Any number
Solution:
Given, curves
a
2
x
2
+
4
y
2
=
1.....
(
i
)
and
y
3
=
16
x
.....
(
ii
)
From
(
i
)
,
d
x
d
y
=
−
a
2
x
y
4
, From
(
ii
)
,
d
x
d
y
=
−
3
y
2
16
∵
Curves intersect orthogonally
∴
(
−
a
2
4
y
x
)
(
3
y
2
16
)
=
−
1
⇒
−
3
a
2
y
3
64
x
=
−
1
⇒
3
a
2
4
=
1
[
∵
y
3
=
16
x
]
⇒
a
2
=
3
4