cotx=−3 ⇒tanx=−31⇒tanx=−tan6π ⇒tanx=tan(π−6π) or tan(2π−6π) [∵tanx is negative in 2nd and 4th quadrant and tan(π−θ)=−tanθ and tan(2π−θ)=−tanθ] tanx=tan65π or tan611π ⇒x=65π or 611π
Here, principal value is x=65π
We know that, if tanx=tanα, then
General solution, x=nπ+α x=nπ+65π(∵n∈Z)