If cotθ+tanθ=3 sinθcosθ1=3 3sinθcosθ=1...(i)
and 1−cos2θ−αcosθ=0 ⇒sin2θ=αcosθ...(ii)
From Eqs. (i) and (ii), we get sin3θ=3α...(iii)
Now, from Eq. (ii), we get sin4θ=α2cos2θ ⇒sin4θ=α2(1−sin2θ) ⇒(3α)4/3=α2(1−(3α)2/3) [ From Eq. (iii) sinθ=(3α)1/3] ⇒81α4=α6[1−(3α)2−3(3α)2/3(1−(3α)2/3)] ⇒811=α2[1−9α2−3(3α)2/3α2(3α)4/3] [∵α2(1−(3α)2/3=(3α)4/3] ⇒811=α2[1−9α2−31] ⇒811=α2(32−9α2) ⇒9α2(6−α2)=1