We have, cot−1(cosα)−tan−1(cosα)=x 2π−tan−1cosα−tan−1cosα=x ⇒2tan−1(cosα)=2π−x ⇒cos−1(1+cosα1−cosα)=2π−x [∵2tan−1x=cos−1(1+x21−x2)] 2cos22α2sin22α=cos(2π−x) ⇒tan22α=sinx ∴sinx=tan22α
Note There is a correction in question. It is sinx not