cos2x=tan2y=sec2y−1=cot2z−1
So, 1+cos2x=cot2z=sin2zcos2z=1−cos2zcos2z =1−tan2xtan2x=cos2x−sin2xsin2x ⇒(2−(sin)2x)=1−2(sin)2x(sin)2x ⇒(2−(sin)2x)(1−2(sin)2x)=(sin)2x ⇒2sin4x−6sin2x+2=0 ⇒sin2x=23±9−4=23±5
but sin2x∈[0,1] so rejecting sin2x=23+5
we have, (sin)2x=23−5=(25−1)2 ⇒sinx=25−1⇒2sinθ=25−1 ⇒sinθ=45−1⇒θ=18o