cosx=−21
Given that x lies in third quadrant.
i.e., π<x<23π
We have, sin2x+cos2x=1⇒sin2x=1−cos2x ⇒sin2x=1−(−21)2 ⇒sin2x=1−41=43 ⇒sinx=±23 ∵ In third quadrant sinx is negative, so we will leave its positive value.
i.e., sinx=−23
Now, tanx=cosxsinx=−21−23=3 cotx=tanx1=31
and secx=cosx1=−2, cosecx=sinx1=−32