Given, cosθ=5−3 and π<θ<23π, therefore θ lies in third quadrant. Therefore, in third quadrant sinθ<θ, cosθ<θ and tanθ>θ.
We have, sin2θ=1−cos2θ=2516 ⇒sinθ=±54 but sinθ<0. ∴sinθ=−54; secθ=cosθ1=3−5, cosecθ=sinθ1=4−5 tanθ=cosθsinθ=34 and cotθ=tanθ1=43
Now, secθ−tanθcosecθ+cotθ =−35−34−45+43 =−9/3−2/4=61