Given, sinα+cosα=43…(i)
Now, sin6α+cos6α =(sin2α)3+(cos2α)3=(sin2α+cos2α) (sin4α+cos4α−sin2α⋅cos2α) =1⋅{(sin2α+cos2α)2−3sin2α⋅cos2α} (∵sin2α+cos2α=1) ={1−43(sin2α)2}…(ii)
On squaring both sides of Eq. (i), we get (sin2α+cos2α)+2sinα⋅cosα=169 ⇒sin2α=169−1=16−7 ⇒(sin2α)2=25649
On putting this value in Eq. (ii), we get sin6α+cos6α={1−43×75649}=(1−1024147) =1024877