cos2θ=3a2−1,tan22θ=tan2/3α tan32θ=tanα⇒cos32θsin32θ=cosαsinα =sinαsin32θ=cosαcos22θ=k sin32θ=ksinα...(i) cos32θ=kcosα...(ii) k2/3sin2/3α+k2/3cosα=1 sin2/3α+cos2/3α=k2/3
Squaring and adding (i) and (ii) k2(sin2α+cos2α)=sin62θ+cos62θ k2=1−43sin2θ=1−43(1−cos2θ) k2=41+433a2−1⇒k2=4a2 sin2/3α+cos2/3α=(a2)2/3
and cos2−cos3 =2sin(23+2)×sin(23−2)>0