f(x)=∣∣cos(2x)−cosxsinxcos(2x)cosxsinxsin(2x)−sinxcosx∣∣,=cos4x+cos2x
Now f′(x)=−2sin2x−4sin4x=0 ⇒f′(x)=2sin2x(1+4cos2x)=0
Then sin2x=0 or cos2x=−41
For sin2x=0;x=0,π/2−π/2
For cos2x=−1/4 there are four solutions. f′(x)=0 has more than three solutions.
Again f′′(x)=−(4cos2x+16cos4x) ⇒f′(0)<0