Given that cos−1x=α,0<x<1…(i) ⇒x=cosα∴sin−1(2x1−x2​)+sec−1(2x2−11​)=32π​ ⇒sin−1(2cosα1−cos2α​)+sec−1(2cos2α−11​)=32π​ ⇒sin−1(sin2α)+sec−1(sec2α)=32π​ ⇒2α+2α=32π​ ⇒α=6π​ From (i)
Now , x=cos6π​=23​​ ⇒2x=3​ ∴tan−1(2x)=tan−1(3​) =3π​