Note : cos−1x+cos−1y=cos−1 [xy−1−x21−y2]
Let cos−1(ax)+cos−1(by)=α
Now, replace x by ax and y by by in the
given note, we get cos−1[ax,by−1−a2x21−b2y2] =cos−1(ax)+cos−1(by)=α ⇒abxy−1−a2x21−b2y2=cosα ⇒abxy−a2a2−x2b2b2−y2=cosα ⇒abxy−ab1a2−x2b2−y2=cosα ⇒abxy−cosα=ab1a2−x2b2−y2
Now, square both side, we get (abxy−cosα)2=a2b21(a2−x2)(b2−y2) ⇒a2b2x2y2+cos2α−ab2xycosα =1−a2x2−b2y2+a2b2x2y2 ⇒a2x2−ab2xycosα+b2y2 =1−cos2α=sin2α