Let cos−1p+cos−11−p+cos−11−q=43π ......(i)
Let a=cos−1p b=cos−11−p and c=cos−11−q ⇒cosa=p cosb=1−p c=1−q ⇒cos2a=p, cos2b=1−pcos2c=1−q
Now, sin2a=1−cos2a=1−p ⇒sina=1−p sin2b=1−cos2b=1−1+p ⇒sinb=p sin2c=1−cos2c=1−1+q=q ⇒sinc=q ∴ equation (i) can be written as ∴a+b+c=43π ⇒a+b=43π−c
Take cos on each side, we get cos(a+b)=cos(43π−c) ⇒cosacosb−sinasinb =cos{π−(4π+c)}=−cos(4π+c)
Put values of cos a, cos b and sin a, sin b,
we get p.1−p−1−pp =−(211−q−21q) ⇒0=1−q−q⇒1−q=q
Squaring on both side ⇒1−q=q ⇒1=2q⇒q=21