Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If C0, C1, C2, ldots, C15 are the binomial coefficients in the expansion of (1+x)15, then (C1/C0)+(2 C2/C1)+(3 C3/C2)+ ldots+(15 C15/C14) is equal to
Q. If
C
0
,
C
1
,
C
2
,
…
,
C
15
are the binomial coefficients in the expansion of
(
1
+
x
)
15
, then
C
0
C
1
+
C
1
2
C
2
+
C
2
3
C
3
+
…
+
C
14
15
C
15
is equal to
1952
215
AMU
AMU 2015
Binomial Theorem
Report Error
A
32
0%
B
64
21%
C
128
16%
D
None of these
63%
Solution:
C
0
C
1
+
C
1
2
C
2
+
C
2
3
C
3
+
…
+
C
14
15
C
15
=
n
+
n
2
2
n
(
n
−
1
)
+
2
n
(
n
−
1
)
3
×
2
3
n
(
n
−
1
)
(
n
−
2
)
+
…
upto
15
terms
=
n
+
(
n
−
1
)
+
(
n
−
2
)
+
…
+
upto
15
terms
=
2
15
(
15
+
1
)
=
120