Q.
If c,d are the roots of the equation (x−a)(x−b)−k=0, then the roots of the equation (x−c)(x−d)+k=0 are
1657
196
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have, (x−a)(x−b)−k=0 ⇒x2−(a+b)x+ab−k=0
Since the roots of Eq. (1) are c and d ∴c+d=a+b,
and cd=ab−k
Now (x−c)(x−d)+k=0 ⇒x2−(c+d)x+cd+k=0 ⇒x2−(a+b)x+ab=0
[Putting the values of a+b and ab from Eqs (2) and (3)] ⇒(x−a)(x−b)=0 ⇒x=a,b.