Q.
If C1,C2,C3,C4,C5 and C6 are constants, then the order of the differential equation whose general solution is given by y=C1cos(x+C2)+C3sin(x+C4)−C5ex+C6, is
Given, y=C1cos(x+C2)+C3sin(x+C4)+C5ex+C6 y=C1[cosxcosC2−sinxsinC2] +C3[sinxcosC4+cosxsinC4]+C5ex+C6 =cosx(C1cosC2+C3sinC4) +sinx(−C1sinC2+C3cosC4)+C5ex+C6 =Acosx+Bsinx+Cex+D
where, A=C1cosC2+C3sinC4 B=−C1sinC2+C3cosC4,
and C=C5,D=C6
Hence, order is 4. ( ∵ number of arbitrary constants is 4)