Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If C0, C1, C2, ldots ldots ldots ldots Cn denote the binomial coefficients in the expansion of (1+x)n, then the value of C0+(C0+C1)+(C0+C1+C2)+ ldots . +(C0+C1+ ldots .+Cn-1)
Q. If
C
0
,
C
1
,
C
2
,
…………
C
n
denote the binomial coefficients in the expansion of
(
1
+
x
)
n
, then the value of
C
0
+
(
C
0
+
C
1
)
+
(
C
0
+
C
1
+
C
2
)
+
…
.
+
(
C
0
+
C
1
+
…
.
+
C
n
−
1
)
2333
255
BITSAT
BITSAT 2013
Report Error
A
n
.
2
n
−
1
30%
B
n
.
2
n
30%
C
(
n
−
1
)
.
2
n
−
1
26%
D
(
n
−
1
)
.
2
n
15%
Solution:
C
0
+
(
C
0
+
C
1
)
+
(
C
0
+
C
1
+
C
2
)
+
…………
+
(
C
0
+
C
1
+
…………
C
n
−
1
)
=
n
C
0
+
(
n
−
1
)
C
1
+
(
n
−
2
)
C
2
+
……
.
C
n
−
1
=
C
1
+
2
C
2
+
3
C
3
+
4
C
4
……
n
C
n
=
n
.
2
n
−
1